多感覚情報処理が脳の逸脱検出に及ぼす影響

森叶人,高橋宏知

Multisensory Processing, Deviance Detection, Auditory Cortex, Visual Cortex, Rat

1. 背景

脳の予測システムは、外界の多様な情報を利用して 予測を構築すること、そして予測と現実との違いを把 握すること、によって実現される.前者は、異なる感 覚モダリティの入力に対する多感覚情報処理[1]、後者 は逸脱検出システム[2]といった脳機能で実現されて いる.これらの脳機能の関係性を調べることは、予測 システムのメカニズムを明らかにする上で重要である.

多感覚情報処理が脳の逸脱検出機能に影響を与える ことはこれまでに調べられてきたが[3],多くの研究は 頭頂葉から前頭葉に位置する連合野を対象としており, 感覚野はほとんど調べられてこなかった.一方で,逸 脱検出に関わるミスマッチ陰性電位 (Mismatch Negativity, MMN) は感覚野から主に発生することが ヒトでも動物モデルでも報告されている[2].こうした ことから,動物モデルの感覚野において,多感覚入力 に対する MMN を調べることで,多感覚情報処理が逸 脱検出システムに及ぼす影響をより詳しく明らかにで きると考えた.

逸脱検出に関わる多感覚,具体的には視聴覚情報処 理として,Fig.1 に示す 2 つのフレームワーク,すな わち,(1)多感覚モダリティで共に逸脱検出システム が機能する場合,(2)単一感覚モダリティの逸脱検出 に多感覚情報処理が割り込む場合を考えた.これらの フレームワークに従い,感覚野の逸脱検出システムが, 多感覚情報処理の影響を受けるかどうか調べることを 本研究の目的とした.具体的には,麻酔下ラットの聴 覚野と視覚野から神経活動を計測し,前述の 2 つのフ レームワークに沿った多感覚刺激系列に対する MMN と,単一感覚刺激系列に対する MMN を比較した.

2. 実験方法

2.1 計測方法

イソフルラン麻酔下でラット右脳の聴覚野と視覚野 を露出し、32点の表面電極アレイで神経活動を計測し た.計測点は予め、聴覚、視覚刺激に対する神経活動 の振幅を用いて、聴覚野(A)、1次視覚野(V1)、2 次視覚野(V2L)に分類した.

2.2 刺激方法

MMN を計測するために、オドボール課題と呼ばれ る刺激系列を用いた.同系列では、高頻度刺激(標準 刺激,standard)と低頻度刺激(逸脱刺激,deviant) を、9:1 の確率でランダムに提示する.本研究では、 聴覚刺激として周波数が異なる2つの音を、視覚刺激 としてモニタ上の水平位置が異なる2つの縦長の長方 形を、独立に、または組み合わせて提示した.

具体的には、単一感覚オドボール課題として (a) 聴 覚オドボール課題 (Fig.2, AO) と (b) 視覚オドボー ル課題 (同図, VO) を、多感覚オドボール課題として (c) 逸脱刺激のタイミングが揃っている視聴覚オドボ ール課題(同図, s-AVO), (d) 逸脱刺激のタイミング が揃っていない視聴覚オドボール課題(同図, a-AVO) を提示した.また,聴覚の逸脱検出システムに単一の 視覚刺激が及ぼす影響を調べるため, (e-g) 聴覚逸脱 刺激の 1-3 刺激前に視覚刺激を提示する系列(Fig.2, AO-F1,2,3)を提示した.全ての計測を終えたのち, NMDA 受容体阻害剤(AP5)を含んだアガロースゲル を視覚野に 15 分貼付し,再度電極アレイを設置して 計測を行った.

標準刺激,逸脱刺激に対する神経活動は,それぞれ 加算平均したのち,標準反応から逸脱反応を引いた最 大値を MMN の振幅として定量化した(Fig.3(a)).

3. 結果

3.1 視聴覚オドボール課題における MMN

視聴覚の逸脱検出システムが共に機能する際

Fig.1 Framework of multisensory processing

Fig.2 Stimulation paradigm

(s-AVO, a-AVO)の MMN と,単一感覚オドボール課題 (AO, VO) に対する MMN を比較した(Fig.3(b-e)). 第一に,聴覚,視覚オドボール課題の MMN の和 (Fig.3(c),AO+VO)と,視聴覚の逸脱刺激を同時に提示した際(s-AVO)の視聴覚 MMN (avMMN)の振幅 は,有意に異なった(p < 0.01,符号順位検定, Bonferroni法で補正).第二に,一次視覚野において, VO 課題より s-AVO 課題で MMN の潜時が早かった (Fig.3(b),p < 0.05,順位和検定,Bonferroni法で補正). 第三に,NMDA受容体の阻害薬で,視覚野の MMN 生 成を抑制[2]したところ,視覚野の avMMN は減衰した が聴性 MMN (aMMN) は減衰しなかった(Fig.3(d)).

また, 視聴覚の逸脱刺激が同時ではない場合 (a-AVO(A), (V))の MMNの振幅は, 単一感覚オドボ ール課題より小さかった (Fig.3(e)).

3.2 単一の視覚刺激が聴性 MMN に与える影響

聴覚の逸脱検出システムに単一の視覚刺激が及ぼす

Fig.3 Amplitude and latency of auditory-, visualand audiovisual MMN

Fig.4 The effect of visual stimuli on aMMN

影響を調べるため,聴覚逸脱刺激の1-3刺激前に視覚 刺激を提示した際(AO-F1,2,3)と,AO課題とで聴覚 野の aMMNを比較した.Fig.4(a)に,各AO-F課題に おける aMMNの振幅の,AO課題に対する変化量を示 す.逸脱刺激前に視覚刺激を提示すると,MMNの振 幅は有意に減少した(p<0.05,符号順位検定,Holm 法で補正).また,視覚刺激に対する誘発電位の振幅と aMMNには負の相関が認められ,逸脱刺激と視覚刺激 が離れるほど,相関係数の絶対値は小さかった (Fig.4(b)).これらの結果は,単体の視覚刺激が,直後 の聴覚逸脱の検出を阻害することを示唆する.

4. 考察

3.1 節にて, avMMN と aMMN は潜時や振幅が類似 していた(Fig.3(b),(c)). 一方で,視覚野の NMDA 受 容体の阻害後に,視覚野で avMMN の振幅が減衰した ことから(Fig.3(d)), avMMN の発生には視覚野の逸 脱検出システムが関与することが示された.一方,単 一感覚オドボール課題で生じる MMN と, a-AVO で生 じる MMN では,振幅が異なった(Fig.3(e)) ことから, 視聴覚オドボール課題に対する MMN は, aMMN およ び視覚 MMN と完全に同一ではないことを示唆する. こうしたことから,視聴覚オドボール課題に対して, 聴覚系と視覚系の逸脱検出システムは相互に作用する と考えられる.

5. 結論

本研究は、感覚野の逸脱検出システムが多感覚情報 処理の影響を受けるかを調べるため、麻酔下でラット 聴覚野と視覚野の MMN を同時計測した.その結果と して、次の2つの知見を得た.

・視聴覚オドボール課題に対して,聴覚系と視覚系の逸脱検出システムは相互作用する(3.1節).

・特定のタイミングで提示された視覚刺激は, 聴覚 系の逸脱検出システムを阻害する (3.2 節).

以上は、ラット感覚野の逸脱検出システムが、多感 覚情報処理の影響を受けることを示唆する.

参考文献

- Talsma, D., "Predictive coding and multisensory integration: An attentional account of the multisensory mind", Front. Integr. Neurosci., Vol.9, (2015), Article 19.
- [2] Shiramatsu, T. I., Kanzaki, R., and Takahashi, H., "Cortical mapping of mismatch negativity with deviance detection property in rat", PLoS ONE, Vol.8, (2013), e82663.
- [3] Stekelenburg, J. J., Keetels, M., and Vroomen, J., "Multisensory integration of speech sounds with letters vs. visual speech: only visual speech induces the mismatch negativity", Eur. J. Neurosci., Vol.47, (2018), pp.1135-1145.