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1. Introduction 
  Animals get substantial sensory evidences as inputs of brain, 
and execute actions as outputs to adapt environment.  Here, I 
propose a hypothetical architecture of the transfer rules between 
brain and the inputs/outputs, as shown in Fig. 1.  The transfer 
rules are categorized into multiple modules of three levels, i.e., 
algorithms, parameters and neural activities, and the weight of 
each module dynamically changes by a problem to solve and 
even during a problem.  In contrast with my hypothesis, 
conventional studies usually merely focus on one of each level or 
only the neural activity, making it difficult to test the rules of 
highly adaptable brain.  In my hypothesis, brain has a lot of 
algorithms and dynamically selects an algorithm to use.  The 
algorithm consists of various parameters and a series of 
parameters to use also changes dynamically.  The hardware, i.e., 
neural activity, for implementing the parameters also has various 
features such as spike counts and spike timings.  To investigate 
the temporally dynamic brain, I test how the neural activities, 
parameters and algorithms changed dynamically.   

2. Dynamic system of neural activities 
2.1. Experimental objective 
  To test the dynamic system of neural activities, I focus on the 
tone frequency representation of auditory cortex in various tone 
intensity ranges.  The auditory cortex is thought to have a 
distinct place code of tone frequency, or tonotopic map.  
However, the spatially focal activation as a function of test 
frequency is observed only at a low sound pressure level (SPL); 
at moderate or high SPLs, the activation patterns become less 
distinct across test frequencies, suggesting that the sound 
frequency is not represented by a simple place code of firing rates, 
but that the information is distributed spatio-temporally 
irrespective of the focal activation[1].  Here, I investigate the 
tone-frequency representation of auditory cortex in mid to high 

SPLs, and test how the frequency representation depends on tone 
intensities. 
2.2. Methods 
  All procedures were approved by my institutional committee 
and performed in accordance with “Guiding Principles for the 
Care and Use of Animals in the Field of Physiological Science” 
of the Japanese Physiological Society.  Rats were anesthetized 
with isoflurane, and tone-evoked auditory cortical neuronal 
activities were recorded with a 24-probes microelectrode array.  
Test tones frequencies ranged between 5 and 50 kHz with 5 kHz 
increments and the intensities ranged between 50 and 70 dB SPL 
with 5 dB increments which corresponds to mid-intensity range.  
Each tone presented 20 times in pseudorandom order with 
inter-tone interval of 200 ms. 
  To identify spatio-temporal neural activity patterns important 
for the tone frequency representation, I conducted a recursive 
feature elimination (RFE).  RFE extracted important 
spatio-temporal windows one by one without deteriorating a 
correct identification of a decoder.  As the decoder of RFE, I 
employed support vector machine (SVM), k-nearest neighbor 
(KNN) and canonical discriminant analysis (CDA), and identified 
which decoder had the best correct identification.  The correct 
identification was analyzed with 5-fold cross validation.   
  Correct identification of SVM with RFE was 68.5 ± 2.81% 
(mean ± standard errors, here and hereafter) in 12 subjects which 
was higher than that of KNN with RFE (59.36 ± 2.81%; 
Wilcoxon signed-rank test, p = 0.0226) and CDA with RFE 
(64.56 ± 2.46%; p = 0.175).  Therefore, I employed SVM in the 
following analyses; I referred SVM with RFE as sequential 
dimensionality reduction (SDR). 
  With SDR-identified spatio-temporal neural activity patterns, 
i.e., SDR patterns, I first compared the correct identification with 
spatial patterns, in which temporal structures were eliminated, or 
high spike-rate patterns, in which windows with high spike rates 
were selectively extracted.  I then measured a sparseness of 
SDR pattern, which I referred to as pattern sparseness.  The 
pattern sparseness measures how sparsely population of neurons 
represent a given stimulus.  Further, I investigated a spike rate 
and the weight parameters of SVM in each spatio-temporal 
window of SDR patterns.  To test how the variety of spike rates 
across windows contributed to the classification, I first 
characterized the absolute weights and spike rates in each of the 
windows.  I then focused on a window that had the highest 
weight in each SVM and characterized the normalized spike rate 
of the window with respect to a frequency difference to be 
classified (�f).  Since I had 45 SVMs a pairwise coupling, I 
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obtained 45 highest-weight windows for each subject. 
2.3. Results 
  In a representative subject, Fig. 2A shows recorded auditory 
cortical neural activities which grand-averaged the spike rates for 
all test tones, and Fig. 2B shows the dropping order of SDR.  
SDR tended to extract high-spike-rate windows, but some 
low-spike rate windows were also extracted, implying an 
importance of low-spike-rate windows in frequency 
representation.  Fig. 2C shows the correct identification of SDR.  
The highest correct identification was achieved during the 
dimensionality reduction, and all the test frequencies were 
succeeded to predict in SDR, as shown in Fig. 2D. 
  SDR achieved the best correct identification of 68.6 ± 2.76% at 
93.8 ± 7.85 input data dimensions.  Correct identification at 384 
dimensions was 59.5 ± 2.91%, indicating that SDR identified 
approximately a quarter of spatio-temporal windows and 
significantly improved the correct identification (Wilcoxon 
signed-rank test, p = 4.88E-4).  Moreover, SDR patterns led to 
better decoding than spatial patterns and high-spike-rate patterns, 
of which the correct identifications were 62.9 ± 2.50% and 61.7 ± 
2.75%, respectively (Wilcoxon signed-rank test after Bonferroni 

correction, p = 1.47E-3 in both comparison).  This result 
suggests that tone frequency is encoded in temporal as well as 
spatial structures of neural activities and low-spike-rate windows.   
  Pattern sparseness of SDR pattern decreased from the initial 
condition, i.e., 384 dimensions, by 0.0710 ± 0.0251, which was of 
significant reduction (two-side t-test, p = 0.0164).  In addition, 
the correlation between dropping order of SDR and the 
normalized spike rate of each window were positive (r = 0.504).  
Taken together, SDR pattern tended to extract high-spike-rate 
windows and composed a highly dispersive pattern that probably 
offers an advantage of discrimination ability.   
  Investigation of SVM weights suggested that, in SDR patterns, 
the weights of SVM did not correlate with the spike rates as 
shown in Fig. 3A, suggesting that both high- and low-spike-rate 
windows are participated in tone-frequency representation.  
Further analysis of the weights showed that normalized spike rate 
of a window that had the highest weight in each SVM depended 
on �f as shown in Fig. 3B, suggesting that low-spike-rate 
windows participated in fine frequency differentiation.  This 
result suggests that the auditory cortex effectively overcomes the 
difficulty of local differentiation of frequencies in mid-intensity 
tones by exploiting low-spike-rate windows.  Taking into 
account the frequency representations in low-intensity tones, in 
which tone frequencies are represented with high-spike-rate 
activities, neural features of tone-frequency representation in the 
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Fig. 2.  Example of sequential dimensionality reduction 
(A) Spatio-temporal patterns of spike rates grand-averaged 
across all test stimuli in a representative subject. (B) Dropping 
order of SDR. Dropping order of each window is shown in 
gray scale. Windows with small orders (white) dropped early. 
(C) Correct identification as a function of dimension of input 
data. Asterisk indicates the dimension with the highest correct 
identification. (D) Confusion matrix for cross validation. 
Vertical and horizontal axes indicate tone frequencies predicted 
and tone frequencies presented, respectively. The number of 
each prediction presentation pair is shown in gray scale. 
Correct identification in total is shown in the lower right. The 
input data dimension was 121, indicated by the asterisk in (C). 

 

Fig. 3.  Contribution of low-spike-rate windows 
(A) Weight distribution of SVM as a function of rank order of 
normalized spike rate: (i), Representative subject; (ii), All 
subjects.  Each window has 45 weights because there are 45 
SVMs for a pairwise coupling, and thus, 45 weights are 
distributed at each rank order of individual subject. Correlation 
coefficients between the weight and rank order are shown in 
upper right. (B) Rank order of normalized spike rate in the 
highest weight window with respect to �f. The spike rates 
depended on �f (Kruskal-Wallis, p = 3.06E-7), and were 
positively correlated with �f (r = 0.213, p = 5.52E-7) 

 



 

 

auditory cortex may dynamically change depending on sensory 
stimuli. 

3. Dynamic system of parameters 

3.1. Experimental objective 
  To test the dynamic system of parameters, I focus on the 
uncertainty and investigate the role in action selection.  
Neurophysiological studies show that the uncertainty is actually 
encoded in brain[2], leading to a hypothesis that brain uses the 
uncertainty of reward expectation, as well as the value, to guide 
behavior.  However, studies of animal behaviors usually 
employed a standard reinforcement learning which ignores the 
uncertainty, making it difficult to investigate the role of 
uncertainty.  In this experiment, I employ Bayesian Q-learning, 
where the uncertainties are implemented, and analyze rats' choice 
behaviors in a free choice task.  I then compare the likelihood 
with standard Q-learning and investigate how the role of 
uncertainty changes during the task. 
3.2. Methods 
  In the free choice task, rat selected either left or right hole, and 
received a reward of food pellet stochastically.  Reward 
probability of each choice changed among six reward-probability 
states, i.e., 100%-66%, 66%-33%, 33%-0%, 66%-100%, 
33%-66% and 0%-33% (reward probabilities of left-right choices, 
here and hereafter), when the frequency to select an optimal 
choice reaches 80% in last 20 trials. 
  Bayesian Q-learning assumes that the value of each choice has 
a distribution, served as the uncertainty of value, and the value is 
updated with Bayesian inference.  I prepared three Bayesian 
Q-learning and four standard Q-learning models by testing all 

possible equations to update values with past action-reward 
sequences.  I validated the likelihood of models with 2-fold 
cross validation.  I also analyzed the likelihood in trials around 
state-change periods in which a reward-probability state changed 
another. 
3.3. Results 
  I used two rats and analyzed 45 sessions of data.  I first found 
that rats' choice behaviors were fit to Bayesian Q-learning which 
only tracks a positive reward information, i.e., RBQ-learning, as 
shown in Fig. 4A.  Further analysis of likelihood showed that 
the choice behaviors matched the Bayesian Q-learning especially 
in low- and mid-reward-probability environments, while the 
behaviors were fit to a standard Q-learning in high-reward 
probability states as shown in Figs. 4B-E.  Thus, the uncertainty 
is mainly important in low- and mid-reward-probability states, 
suggesting that the role of uncertainty for action selection 
dynamically changed by the context.   

4. Dynamic system of algorithms 

4.1. Experimental objective 
  For investigating the dynamic system of algorithms, I focus on 
the role of model-free and model-based algorithms, or strategies, 
in action learning.  Recent studies suggest that model-free 
strategies, which learn action values without assuming a 
higher-order structure, are encoded in dorso-lateral striatum, and 
model-based strategies, which use a stored model of the task 
structure to guide choice, are encoded in ventro-medial prefrontal 
cortex[3].  Although, the studies predict the dual strategy system 
of brain, little is known about whether animals employ the two 
strategies dynamically depending on the context, or even during a 
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Fig. 4.  Normalized likelihood of Bayesian Q-learning and standard Q-learning 
(A) Result of 2-fold cross validation. Gray and black bars show standard Q-learning and Bayesian Q-learning, respectively. Number of 
free parameters are shown in the parentheses: **, p < 4.76E-4 in paired t-test after Bonferroni correction with 21 pairs of comparison. 
(B-D) Likelihood of BFQ-learning and RBQ-learning around state-change periods in low (33%-0% and 0%-33%) (B), mid (66%-33% 
and 33%-66%) (C), and high (100%-66% and 66%-100%) (D) reward-probability states.  Trial 0 shows state-change periods. Bold 
lines and surrounding shaded areas show the means and standard errors of the likelihood. Gray dot straight line shows the significant 
level of p = 0.05 in paired t-test after Bonferroni correction. (E) Summary of likelihood at trial 0, i.e., immediately before state-change 
period, in Figs. B-D: paired t-test; low, p = 9.66E-50; mid, p = 3.47E-6; high, p = 4.54E-76. 



 

 

task.  Here, I conduct a rat's free choice task and analyze the 
choice behavior with model-free and model-based strategies.  I 
then investigate which strategy best describes the rats' behaviors 
as a function of rats' behavioral performances. 
4.2. Methods 
  The free choice task consisted of a random sequence of 
variable-reward- and fixed-reward-condition trials.  In each trial, 
rat selected either left or right hole, and received a reward of food 
pellet stochastically.  A light stimulus was presented only in 
fixed-reward condition, and thus rats could know the reward 
condition of each trial.  In variable-reward condition, reward 
probability of each choice changed in 20 to 230 trials among four 
reward-probability states, i.e., 90%-50%, 50%-90%, 50%-10% 
and 10%-50%, when a frequency to select an optimal choice 
reached 80%.  By contrast, in fixed-reward condition, reward 
probabilities were constant in everyday; the probability was 90% 
and 50% in optimal and non-optimal choice, respectively. 
  For a model-free strategy, I employed a simple reinforcement 
learning algorithm, i.e., Q-learning, which gradually updates a 
value of each choice with past action-reward sequences for 
deciding choices.  In contrast, a model-based strategy assumes 
that rats already know the four reward-probability states in 
variable-reward condition, and decides choices based on the state 
probability.  The state probability is updated with hidden 
Markov model (HMM).  I first investigated which strategy 
better described the choice behaviors in variable-reward and 
fixed-reward conditions with Bayesian information criterion 
(BIC).  In variable-reward condition, I further investigated the 
likelihood of both strategies as a function of rats' choice 
frequencies and trials around state-change periods. 
4.3. Results 
  I used five rats and analyzed 102 sessions of data.  Rats' 
choice behaviors in variable-reward and fixed-reward conditions 
were significantly fit to model-based and model-free strategies, 
respectively, as shown in Figs. 5A and B, suggesting that rats 
employed different learning strategies depending on the context.  
Further analysis in variable-reward condition showed that rats' 
behaviors matched model-based strategy when the optimal choice 

frequency was between 20% and 70%, and when the trials were 
away from state-change periods, i.e., when rats' choices were 
fluctuated, as shown in Figs. 5C and D.  In contrast, the 
behaviors matched model-free strategy when the optimal choice 
frequency was less than 10% and trials immediately before 
state-change periods.  The optimal choice frequency of 10% 
was usually observed immediately after state-change periods, i.e., 
over-learning phase.  Thus, these results suggest that rats' 
behavioral strategy shift from model-based to model-free as 
learning progressed, implying the dynamic system of brain 
algorithms. 

5. Conclusion 
  Taken together with three experiments, I found that neural 
activities, parameters and algorithms dynamically changed 
depending on the sensory stimuli, reward conditions, and learning 
phases, respectively.  My results suggest the existence of 
sensory-driven and internal-state-driven dynamic system of brain 
in three different levels, which may be important to adapt highly 
stochastic environments.  Moreover, to test the dynamic brain, 
machine learning algorithms succeeded to model animals 
behaviors and to analyze the neural activities.  Thus, my study 
concluded that I developed the machine learning algorithms 
which could analyze the highly dynamic brain with both 
top-down and bottom-up ways. 

Reference�
[1] Funamizu, A., Kanzaki, R. & Takahashi, H. "Distributed 

representation of tone frequency in highly decodable 
spatio-temporal activity in the auditory cortex." Neural, 
Netw., Vol.24, (2011), pp.321-332. 

[2] Schultz, W., Preuschoff, P., Camerer, C., Hsu, M., Fiorillo, C. 
D., Tobler, P. N., & Bossaerts, P. "Explicit neural signals 
reflecting reward uncertainty." Phil. Trans. R. Soc. B, 
Vol.363, (2008), pp.3801-3811. 

[3] Daw, N. D., Niv, Y. & Dayan, P. "Uncertainty-based 
competition between prefrontal and dorsolateral striatal 
systems for behavioral control." Nat. Neurosci., Vol.8, 
(2005). pp.1704-1711. 

66

72

78

84

480

490

500

510

520

B
IC

B
IC

A B

0.46

0.52

0.58

0.64

0

10E-4

10E-6

10E-8

10E-10

Li
ke

lih
oo

d
Optimal choice (%)

0 20 40 60 80 100

p-value

0.005

858 40101883 2007 2942 6264 8051 6859 2293 1388

0-19 -9 10 200.5

0.54

0.58

0.62

0.66

0.7

Li
ke

lih
oo

d

0

10E-4

10E-6

10E-8

10E-10

p-value

0.00125

Trials from state-change period

Model-free strategy
Model-based strategy

C D

** **

Fig.5.  Likelihood of model-free and model-based strategies 
(A,B) Model comparison with Bayesian Information Criterion (BIC) in variable-reward (A) and fixed-reward condition (B): **, p < 
0.01 in paired t-test. (C) Likelihood as a function of optimal choice frequency. Means and standard errors of the likelihood are presented.  
Dot line shows the significant level of paired t-test which compares the likelihood of model-free and model-based strategies.  Table 
below shows the number of data in each bin. Gray dot straight line shows the significant level of paired t-test. (D) Likelihoods around 
state-change periods. Data presentations comply with Figs. 4B-D. 


