分散培養系における神経活動パターンに基づく機能ネットワークの解析

Analysis of Functional Connectivity Network Based on the Activity Patterns of Dissociated Cultured Neurons

石原 裕也, 高橋 宏知 Yuya Ishihara, Hirokazu Takahashi

Keywords: Cultured Neural Network, Extracellular Stimulation, Plasticity, CFP, Transfer Entropy

1. はじめに

脳の計算原理を解明するために、神経活動パターン から神経回路のネットワーク構造やその可塑性を推定 する手法が求められている.その手法として、相互相 関係数を指標にした条件付き発火確率(CFP)や相互 情報量に基づくトランスファー・エントロピー(TE) が提案されている.しかし、これらの手法の妥当性は、 十分には検討されていない.

本研究の目的は、高密度 CMOS アレイ上に分散培養 した神経細胞ネットワークを対象にして、任意の神経 細胞間の機能結合とその可塑性の推定手法を確立し、 従来手法の妥当性を検証することである.

2. 実験方法

2.1 実験試料

本研究では、図1に示す高密度 CMOS アレイ上に神 経細胞の分散培養系を構築する.同アレイは、1.8×1. 8 mm²に 11,011 個の計測電極を有しており、個々の 神経細胞の活動電位を計測できる.

分散培養系には、wister ラットの胚齢 18 日の胎児の 大脳から摘出した皮質細胞を用い、Jimbo 培地下、セ 氏 36 度、CO2 濃度 5%の条件で培養を行った.

実験試料に可塑性を誘導するために、テタヌス刺激 を用いた.同刺激は細胞外から行う高周波の電気刺激 であり、双方性の矩形波を時間幅 200 マイクロ秒、2 0 Hz で 10 回を 1 セットとし、これを 0.2 Hz で 20 セ ットにわたり、刺激強度を±400 mV、900 mV で行 った.

2.2 電気刺激からの機能結合の推定

軸索上の電極にパルス電流を印加すると,順行性と 逆行性の活動電位が発生し,軸索上を伝播する.順行 性の活動電位は,シナプスを介して,他細胞を発火さ せる.このとき,後シナプス細胞の発火は確率的に起 こり,発火タイミングもばらつく.一方,逆行性の活 動電位は,ほぼ確実に発生し,その発火タイミングに ばらつきもない(図2).したがって,順行性・逆行 性伝播に注意すれば,活動電位が逆行性伝播した細胞 から,順行性伝播した細胞への機能結合を推定できる.

2.3 自発活動からの機能結合の推定

CMOS アレイの各計測点で,神経細胞の活動電位を 計測し,その発火タイミングを抽出すると,図3のよ うな時系列データが得られる.このような時系列デー タから,細胞間の機能ネットワーク結合を推定するために, CFP と TE を用いる. CFP と TE はそれぞれ,

$$CFP_{X \to Y}[\tau] = \frac{\sum_{t} X[t] \cdot Y[t+\tau]}{\sum_{t} X[t]}$$
(1)

$$TE_{X \to Y} = p(y_{t+\tau}, y_t^{\ l}, x_t^{\ m}) \log_2 \frac{p(y_{t+\tau} \mid y_t^{\ l}, x_t^{\ m})}{p(y_{t+\tau} \mid y_t^{\ l})}$$
(2)

で与えられる. なお, X, Y はスパイク列であり, と もに X から Y への結合の強さを表す. 推定した結合 強度をネットワークとして可視化した (図4).

Fig. 3 スパイク時系列データ

3. 結果

3.1CFP, TE の相関

CFPによる結合強度推定とTEによる結合強度推定を 図5に示す.両指標の間には,正の相関がみられた. 3.3 スパイク列からの推定

刺激応答の CFP を基準として,自発発火データの推定された結合強度を比べた(図6). CFP で推定した結合強度の相関係数は R=0.22, P=0.11 であり,TE で推定した結合強度の相関係数は R=0.42, P=0.0012 であった.各推定の ROC 曲線は図中右に示す.

3.3 刺激による可塑性

テタヌス刺激による可塑性の誘発に伴う CFP の変化 を図7に示す.刺激誘発応答の CFP の変化は,結合強 度に対して負の相関を持つ.一方,自然発火の CFP の 変化は,結合強度に対して相関を持たない.さらに自 発は刺激誘発の10 倍の値となった.

4. おわりに

高密度 CMOS アレイ上の分散培養系において,刺激 誘発性の神経活動パターンから神経細胞間の機能結合 とその可塑性を調べる手法を確立した.本手法と比較 して,従来の自発活動から調べる手法は,結合確率を 10 倍以上に見積もることがあり,偽陽性の機能結合を 誤検出してしまう危険性が非常に高いことがわかった.

Fig. 4 CFP(左), TE(右)による機能結合ネットワ ーク

Fig. 5 CFP, TE の相関(赤:結合有,青:結合無)

Fig. 7 CFP のテタヌス刺激後変化 右:刺激,左:自発

参考文献

- D. J. Bakkum, U. Frey, A. Hierlemann, and H. Takahashi, "Subcellular-resolution electronic recording and stimulation of cultured cortical networks using an 11,011 electrode CMOS array," in Society for Neuroscience Conference 2009, Chicago, USA, 10 2009, p. 390.23/HH31.
- [2] Yoshihiko Jimbo, P. C. Robinson, and Akio Kawana," Strengthening of synchronized activity by tetanic stimulation in cortical cultures: application of planar electrode arrays.", IEEE transactions on bio-medical engineering, Vol48 (1998), Issue 11, pp. 1297-304