Vagus-nerve-stimulation induced modulation of neuronal synchronization in the cortex

狩野竜示 (Ryuji Kano), 指導教員 高橋宏知 (Hirokazu Takahashi)

Keywords: vagus nerve stimulation, cerebral cortex, local field potential, microelectrode array, rat

1. 序論

迷走神経刺激療法 (Vagus nerve stimulation; VNS)は、迷走神経にらせん電極を巻きつけ、電気刺 激を施すことにより、てんかん発作を抑制する治療方 法である. 抗てんかん薬の効果が薄い難治性てんかん に対し、VNS は治療の選択肢の一つとなる. VNS は 臨床上で既に 6 万人以上の患者に用いられているが, その作用機序は完全には解明されていない. VNS の効 果として、年単位の長期間の使用により、てんかん特 有の脳波である棘波が減少する[1]. 短期的にも、てん かん発作開始時に VNS を施すと、発作の持続時間が 短縮されることから[2], VNS は大脳皮質に何らかの 急性的影響を与えているはずである.しかし、VNS が 脳波に与える影響は未だ解明されていない[3].本実験 では、ラット聴覚皮質の局所電場電位(Local Field Potential; LFP)を, 0.4 mm 単位という高い空間分解 能を持つ多点電極で計測し、VNS が神経活動の同期に 与える急性的影響を解析した.実験では、健常状態と てんかんモデル発作状態の二つの状態に分けて、神経 活動の同期を解析し、脳の状態に依存した VNS の効 果を調べた.

2. 実験方法

2.1 生理実験

96 個の計測点を持つ多点電極を用いて,麻酔下のラット聴覚皮質第4層のLFPを同時計測した(図1(a)).

本実験で用いた迷走神経刺激装置は、ジェネレータ とらせん電極から成る.計測一週間前にジェネレータ を背側の皮下に埋植し(図1(b)(i)),らせん電極を左 迷走神経に留置した(図1(b)(ii)). VNSの刺激電流 は0.25 mAから2.0 mA,刺激頻度は5Hzから30Hz とした.健常なラットでVNSの効果を調べた後、カ イニン酸n水和物(Kainic acid)3 mgを腹腔注射し、 人工的にてんかん性異常脳波、すなわち、発作状態を 誘発した.注射後、約30分後にVNSを30秒間与え、 発作状態でのVNSの効果を調べた.

2.2 同期度の解析

LFP の解析にあたって,同期度の指標を示す位相同 期度 (Phase Locking Value; PLV)を導出した.まず, 計測信号にバンドパスフィルタ,ヒルベルト変換を順 次施し,各時刻の瞬時位相を求めた.2計測点間(ch1, ch2)の瞬時位相の位相差を $\Delta \phi = (\phi_{ch1} - \phi_{ch2})$,時間 長を Tとし,PLV は式 (1)で定義した.

Fig.1. Animal preparation

(a) Cortical mapping of neural activities using multi-electrode array. (b) Implantation of VNS device.
(i) The generator implanted subcutaneously on the dorsal side of rats. (ii) The spiral electrode wrapped around the left vagus nerve.

$$PLV(ch1, ch2) = \left| \frac{1}{T} \sum_{t} e^{i(\Phi_{ch1} - \Phi_{ch2})} \right| \qquad (1)$$

上記 PLV を聴覚皮質内の計測点の全組み合わせで求めた. な お,計測点の全組み合わせ数は,聴覚皮質内の計測点数をNと すると,N×(N-1)/2となる.これらのPLVの平均値,PLV_{mean} を神経活動全体の同期の指標として用いた. VNS 直前 (PreVNS)とVNS 直後 (PostVNS)の各 25秒間でPLV_{mean}を計算 した.ただし,紡錘波と判断した時間帯は PLV の計算に含め なかった.なお,PLV の計算は次の7種類の帯域で行った: δ 波, 1~4 Hz; θ 波, 4~8 Hz; α 波, 8~13 Hz; Low- β 波, 13~21 Hz; High- β 波, 21~30 Hz; Low- γ 波, 30~45 Hz; High- γ 波, 55~80 Hz.

実験結果とその検討

図 2 (a) に, 1.0 mA, 10 Hz の条件で VNS を与えた例を示す. 健常なラットでは, VNS の直後で PLV が上昇する傾向を示した. この PLV の上昇傾向は, 図 2 (b) に示すように, すべての 帯域で認められ (n = 6), 特に High-γ帯域においては有意に上 昇した. 一方,発作状態では, PLV が減少する傾向にあった.

(min) Fig.2. VNS-induced modulation of neural activities (a) PLV among auditory cortex before and after VNS. Each dot shows a channel of electrode. Lines show PLVs in certain ranges. (b) Band specific Δ PLV_{mean} induced by VNS in normal state (gray dotted line) and epileptic state (black solid line). Asterisks indicate Δ PLV_{mean} is significantly higher than zero (one-sided t-test): *: p<0.05; (c) Time course of PLV_{mean} in Low β (gray dotted line) and Low γ (black solid line) band after administration of kainic acid.

20

10

30

0.6

0

LowBeta

LowGamma

50

40

発作状態での PLV の減少は、特に、δ、Low-β帯域で 有意に認められた(図 2 (b)).また、健常状態におけ る Δ PLV_{mean} と発作状態における Δ PLV_{mean} では、δ、 Low-β、Low-γ帯域で有意な差が見られた(p<0.05; 2 標本 t 検定).なお、カイニン酸の投与後、ラット聴覚 皮質における PLV は、図 2(c)のように漸増傾向を示し た.VNS による、発作状態の PLV の減少作用は、こ の上昇傾向を上回った.

健常ラットにおける VNS の同期化作用は, VNS が 認知機能に好影響を与えていることを示唆している. 一方, てんかん発作状態では脳の活動が過剰に同期す る.この発作状態における VNS の脱同期化作用は, てんかん発作の抑制を示唆している. 一般的に, 高い 周波数帯域の同期は局所的な情報処理を反映している. 一方,低い周波数帯域の同期は,異種感覚統合や注意 のように、様々な領野にまたがる広域的な情報の統合 を担うと考えられている[4,5]. したがって、健常時の VNS による High-γ帯域の同期は、局所的な情報処理 の亢進を促し、てんかん発作状態のδ、Low-β帯域の脱 同期は、領野間の相互作用を抑制することで、発作を 抑える効果を反映していると考える.このように, VNS の効果が健常時と発作状態で異なることから, VNS が同期の恒常性を保つ作用を有することが示唆 される.

4. 結論

本研究では、ラット聴覚皮質における LFP を計測 し、VNS が LFP の同期度に与える影響を解析した. また、その影響が、カイニン酸投入前後でどのように 変わるかを調べた.その結果、VNS は脳活動の同期度 が低い健常状態では同期を促し、同期度が高いてんか ん発作状態では脱同期を促すことがわかった.このこ とから、VNS は脳活動の恒常性を保つ機能を担ってい ることが示唆される.

参考文献

- Morris, G. L., 3rd and W. Mueller: "Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy", Neurology, Vol.53, (1999), pp.1731-1735.
- [2] A. Zagon, AA. Kemeny: "Slow hyperpolarization in cortical neurons: a possible mechanisms behind vagus nerve stimulation therapy for refractory epilepsy?", Epilepsia, Vol.41, (2000), pp.1382-1389.
- [3] E. Hammond, B. Uthmanm, S. Reid, and B. Wilder: "Electrophysiological studies cervical vagus nerve stimulation in humans: I EEG effects", Epilepsia, Vol.33, (1992), pp.1013-1020.
- [4] C. E. Schroeder and P. Lakatos: "Low-frequency neuronal oscillations as instruments of sensory selection", Trends in Neurosciences, Vol.32, (2009), pp.9-18
- [5] X. J. Wang: "Neurophysiological and computational principles of cortical rhythms in cognition", Physiological Reviews, Vol.90, (2010), pp. 1195-1268