聴皮質の定常的な神経活動における音情報のデューディング Decoding of Neural Activity Responding to Steady Sound in the Auditory Cortex

阿久津 完

指導教員 高橋 宏知 講師

Kan AKUTSU

(Lecturer Hirokazu TAKAHASHI)

Keywords: Rat, Auditory Cortex, Sparse Logistic Regression, Steady-State

1. 序論

周波数や情動情報といった音情報を表現する神経活動と して、これまでは、音提示直後 (onset、図1)の過渡的な神 経活動が主に調べられてきた.一方で、過渡応答後の定常 的な神経活動 (Steady-State; SS, 図1)には、音情報が表 現されていないと考えられてきた.しかし近年、定常的な 神経活動において、聴皮質の異なる2点間の発火頻度の相関 が、音情報を表現していることが示唆されている [1].ま た、恐怖や喜びといった音の情動情報が、定常的な神経活 動の位相同期性 (Phase Locking Value; PLV)に表現され ていることも示唆されている [2].しかし、多点同時計測 した神経活動から得られる、相関や同期性といった特徴ベ クトルの次元は大きいため、音情報を表現している特徴量 を機械的に抽出する手法が必要である.

本研究では識別器として, Sparse Logistic Regression (SLR)[3]を用いた. SLRは, データの特徴量ベクトルが高次 元で,多くの成分が識別に不要な場合に,入力次元を効率 的に圧縮できることが知られている.

本研究では、聴皮質の定常的な神経活動に、周波数や情動といった音情報が表現されているかどうかを調べた.具体的には、まず、音刺激に対するラット聴皮質の局所電場 電位 (Local Field Potential; LFP)を、微小電極アレイ で多点同時計測した.その後、過渡的または定常的な神経 活動の特徴量を用いて、SLR で周波数情報を識別した際の 正答率を比較した.

また、ラットに恐怖または報酬を用いた古典的条件付け を施す前後で、SLR の周波数識別における正答率を比較し た. さらに、識別に寄与する特徴量についても考察した. 2. 方法

2.1 古典的条件付け

ラットを、ナイーブ群 (n = 6),恐怖学習群 (n = 7), 報酬学習群 (n = 7)の3 群に分け、学習群には、罰、また は報酬に対する古典的条件付けを施した.条件刺激 (Conditioned Stimulus; CS) として、16 kHz (60 dB SPL, 10 sec)の純音を用いた.無条件刺激 (Unconditioned Stimulus; US) として、恐怖学習群では下肢への電気ショ ック (0.3 mA; 1 sec)を、報酬学習群は、スクロース錠2 錠を用い、CS と US の組み合わせを、恐怖学習群は 20 また は 40 回、報酬学習群は 40 回提示して、CS と US を連合学 習させた.

2.2 生理実験

学習成立後のラットと,ナイーブ群のラットの聴皮質から,麻酔下の神経活動をそれぞれ計測した.96点の計測点をもつ微小電極アレイを聴皮質に刺入し,4層の局所電場電位(LFP)を多点同時計測した.

2.2.1 過渡的な神経活動の計測

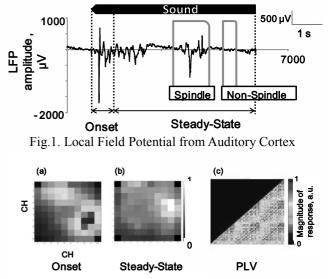
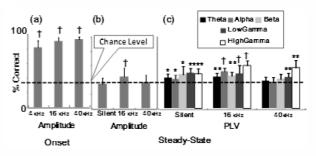
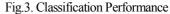




Fig.2. Input Data

(a), (b) Each channel represents the electrode position and (c) represents PLV of each channel

SLR input data as a minimum amplitude of LFP from 0 to 500 ms after the sound onset (a), average amplitude in 300ms in SS (b), PLV of Non-Spindle LFP. 10-fold cross- validation (c). (n=6) p<0.03, p<0.01, p<0.01 (two-sided, t-test)

過渡的な神経活動を計測するために、15 ms の持続時間 の純音を提示した.周波数は1-50 kHz の範囲で18 種類, 音圧は30-70 dB SPL の範囲で5 種類とし、各周波数と音 圧の組み合わせを20 回ずつ、ランダムに提示した.

2.2.2 定常的な神経活動の計測

条件付けに用いた純音(16kHz, 60dB SPL)と,用いてい ない純音(40kHz, 60dB SPL)を30 sec ずつ提示した.各 純音の前後には,音提示をしていない時間を30 sec ずつ設 け,各周波数の純音を10回ずつ提示した.以上の計測を各 ラットにつき,計10回施行した.

2.3 解析

2.3.1 各特徴量に対する正答率比較

SLRに入力する3つの特徴量について以下に示す.まず, 過渡応答の特徴量として,音提示から0.5s以内の負の最 大振幅 (図 2 (a))を用いた. 4 kHz, 16 kHz, 40 kHz (60 dB SPL) に対する最大振幅を 20 サンプルずつ用いて,これらの周波数を SLR に識別させた. 識別の際には 5 回の相互検 証をした.

定常状態の LFP には、まず、5 つの帯域のフィルタをか けた(bin 幅 300 ms、 θ ; 4-8 Hz、 α ; 8-14 Hz、 β ; 14-30 Hz、Low γ ; 30-40 Hz, High γ ; 60-80 Hz). 定常状態の特 徴量として、フィルタ後の LFP の振幅の根二乗平均値(図 2 (b))と、紡錘波(spindle)が無い状態(Non-Spindle) における LFP の位相同期(PLV、図 2 (c))を用いた. どち らも、無音状態、16 kHz、40 kHz に対する入力ベクトルを 100 サンプルずつ用いて、SLR にこれらを識別させた. 識別 の際には、10 回の相互検証をした.

正答率は各個体の正しく識別できた入力テストデータを サンプルデータ数で割った値の平均値とした.

2.3.2 条件付けとの比較

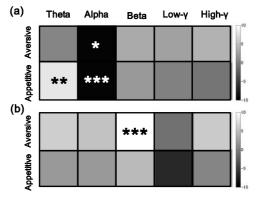
定常状態の神経活動に,情動情報が表現されているかどうかを確認するため,学習群とナイーブ群における SLR の 正答率を比較した.学習によって音に付随した情動情報が, PLV に表現されている可能性が示されている [2] ため, SLR への入力値として PLV を用いた.学習群とナイーブ群 の間に,有意に差が出た帯域に関して,正答率に寄与した チャンネルと聴皮質の周波数局在性とを対応づけた.具体 的には,SLR によって圧縮された特徴ベクトルの内,群同 士を比較するため,特徴周波数 (Characteristic Frequency; CF)を Low (1.0-13 Hz), Middle (14-25 Hz), High (26-50 Hz) の3群に分け,識別に寄与したチャンネ ルの組み合わせに対応する CF の個数を各群の取りうる CF 数の総和で割った.最後に3群の総和を1に規格化した.

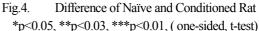
3. 結果と考察

3.1 過渡応答時と定常状態時の比較

図3にSLRを用いた未学習群の周波数識別精度を示す. 過渡応答の正答率は全て80%を超えた. (図3(a)). 定常 状態の各帯域振幅においては、16 kHz の識別精度のみがチ ャンスレベル(33%)より有意に高かった(図3(b)). 一 方, Non-Spindle 状態での計測点間のPLVにおいては、15 帯域中12帯域でチャンスレベルより有意に高くなり、帯域 振幅に比べて向上した(図3(c)). これらの結果より、ま ず、定常的な神経活動にも、周波数情報が表現されている ことが示唆される. さらに、紡錘波が無い時間帯のみを抽 出することで、正答率が上昇したことから、定常的な状態 においては、Non-Spindle 状態の PLV に音の周波数情報が 強く表現されていることが示唆される.

3.2 ナイーブ群と学習群の比較


図4に、Non-Spindle 状態の PLV での、ナイーブ群と学 習群の正答率の差分を示す.16 kHz 提示時には、α、θ帯 域で、正答率に有意な差がみられた.特にθ帯域では、報 酬学習群の正答率のみがナイーブ群に比べて有意に大きか った.これは情動を伴う学習後に、特定の帯域のみ情動情 報が表現されていることを示唆している.次に、報酬学習 群のみで有意に正答率が向上したθ帯域について、各特徴 周波数 (CF)の寄与率を調べた.図5に各 CF の寄与率を示 す.正答率が向上した報酬学習群では、中間の周波数の寄 与率が、ナイーブ群に比べて増加する傾向がみられた.こ のような傾向は、恐怖学習群ではみられなかった.この結 果は図4(a)の結果と対応している.中間の周波数群は、条 件付けに用いた16kHzを含んでおり、学習によって、中間 の周波数を処理する領野の面積が相対的に増加したことが 示唆される.これらの結果から、定常的な神経活動が音の 情動情報を表現していることが示唆される.


4. 結論

本研究では、音刺激に対する神経活動を過渡応答と定常 状態に分け、計算論的手法を用いて周波数の識別を行った. その結果、定常的な神経活動からも、音の周波数情報の識 別が可能であることが分かった. さらに、音に対する古典 的条件付けが、この情報表現を変化させた. これらの結果 は、定常的な神経活動に、周波数や情動といった音情報が 表現されていることを示唆する.

5. 参考文献

- R.Christopher de Charms, Michael M.Merzenich, "Primary cortical representation of sounds by the coordination of action-potential timing", Nature, vol.382, 13, 1996
- [2] 磯口知世,野田貴大,神崎亮平,高橋宏知,"音の情動価がラット聴皮質の位相同期に与える影響,"聴覚研究会資料,vol.40,no.9,pp.735-739,2010
- [3] Yamashita O, Sato MA, Yoshioka T, Tong F, Kamitani Y "Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns." Neuroimage 42: 1414–29, 2008

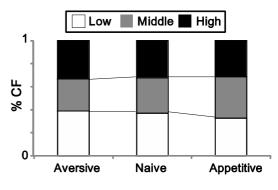


Fig.5. Percentage of CF