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Abstract 

The information processing capacity (IPC) measure is gaining traction as a means of characterizing reservoir computing. 

This measure offers a comprehensive assessment of a dynamical system's linear and non-linear memory of past inputs by 

breaking down the system states into orthogonal polynomial bases of input series. In this study, we demonstrate that IPCs 

are experimentally measurable in the auditory cortex in response to a random sequence of clicks. In our experiment, each 

input series had a constant inter-step interval (ISI), and a click was delivered with a 50% probability at each time step. 

Click-evoked multi-unit activities in the auditory cortex were used as the state variables. We found that the total IPC was 

dependent on the test ISI and reached a maximum at around 10- and 18-ms ISI. This suggests that the IPC reaches a peak 

when the stimulus dynamics and intrinsic dynamics in the brain are matched. Moreover, we found that the auditory cortex 

exhibited non-linear mapping of past inputs up to the 6th degree. This finding indicates that IPCs can predict the 

performance of a physical reservoir when benchmark tasks are decomposed into orthogonal polynomials. Thus, IPCs can 

be useful in measuring how the living brain functions as a reservoir. These achievements have opened up future avenues 

for bridging the gap between theoretical and experimental studies of neural representation. By providing a means of 

quantifying a dynamical system's memory of past inputs, IPCs offer a powerful tool for understanding the inner workings 

of the brain. 

 

Main Text 

The brain is commonly regarded as a high-dimensional dynamical system that processes inputs, resulting in a diverse range 

of spatio-temporal activities driven by external stimuli. Mathematically, such systems are modeled as recurrent neural 

networks, with the recent development of reservoir computing (1-3). Traditional training of recurrent neural networks 

adjusts all the weights in the network to obtain target outputs based on inputs, whereas reservoir computing optimizes only 

the linear outputs of state variables from a fixed system. Therefore, the performance of reservoir computing is determined 

by a physical system with intrinsic non-linear dynamics, or a physical reservoir (4, 5). Previous studies have demonstrated 

that the living neuronal system is likely to have a fading memory property (2, 6-9) and an echo-state property (10-12), 

which are considered prerequisite for a physical reservoir. As a result, recent studies have modeled and interpreted 

physiological findings in the brain as a reservoir (7, 13-19).  

 

The performance of a reservoir has traditionally been evaluated using benchmark tasks (4) such as memory capacity (20), 

time-delayed logic operation (21), pattern classification (22, 23), and time series forecasting (1, 24). However, these 
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measures are task-specific and cannot predict whether and how a given reservoir can be used in other tasks. An emerging 

measure called information processing capacity (IPC) offers a comprehensive quantification of a dynamical system’s linear 

and non-linear memory of past inputs. IPC achieves this by decomposing the system states into orthogonal polynomial 

bases of the input series (25). This measure predicts the system's performance in a given task, with the computation 

represented by the orthogonal polynomial bases. For example, IPC was used to demonstrate that only 9 specific bases were 

required to perform a time series forecasting of the nonlinear autoregressive moving average of 10 time series (NARMA10), 

a typical benchmark task (26). Thus, IPC is a powerful tool for characterizing physical reservoirs both theoretically (26-

28) and empirically (26, 29). These pioneering works have opened up avenues for using IPC to quantitatively characterize 

the living brain as a physical reservoir. By providing a more comprehensive assessment of a dynamical system's memory 

of past inputs, IPC offers a powerful tool for understanding the inner workings of the brain and how it can be utilized for 

various tasks. 

 

The present study aims to demonstrate the experimental measurability of IPCs in the living brain. Using click-evoked 

activities in the auditory cortex of rats, we show that IPCs can reveal both linear and non-linear mappings of past inputs 

and predict performance in benchmark tasks for physical reservoir computing. 

 

To conduct this study, we measured auditory-evoked multi-unit activities (MUAs) in layer 4 of the right auditory cortex of 

anesthetized rats. We used a microelectrode array with a grid of 10 x 10 probes in a 4 x 4-mm2 recording area (ICS-96 

Array; Blackrock Microsystems Inc., USA). We utilized 15 male Wistar rats at postnatal weeks 9-13, weighing between 

260-450 g in the experiments (Tokyo Laboratory Animals Science Co., Ltd., Japan). The protocol was approved by the 

Committee on the Ethics of Animal Experiments at the Graduate School of Information Science and Technology, the 

University of Tokyo (Permit Number: JA19-2) and adhered to previously published procedures (30). We anesthetized the 

rats with urethane (1.0-1.5 g/kg, i.p.) and immobilized them in a custom head-holding device, minimizing discomfort. We 

surgically exposed the auditory cortex to place the microelectrode array. At the conclusion of the experiments, we 

euthanized the rats with an overdose of pentobarbital sodium (160 mg/kg, i.p.). 

 

We delivered test stimuli through a free-field speaker (EAS-10TH800; Panasonic Corp., Japan), placed 15 cm from the left 

pinna, contralateral to the exposed cortex. Using tone bursts with 5-ms rise/fall ramps, 30-ms duration, frequencies ranging 

between 1.6-64 kHz, and intensities between 20-80 dB SPL (sound pressure level), we defined the auditory cortex as being 

tone-responsive, with a post-stimulus latency of 5-55 ms, and having a distinct frequency tuning. On average, 60.6 ± 12.8 

(mean ± s.d.) recording sites were included in the auditory cortex (n = 15), and these sites were used to derive IPCs in the 

auditory cortex. 

 

To estimate IPC in the auditory cortex, we utilized a series of clicks that followed the Bernoulli distribution, with a constant 

inter-step interval (ISI) of 7, 10, 18, 32, 56, 100, 178, or 316 ms. At each time step, a click was delivered with a probability 

of 50%. To ensure accuracy, each ISI condition was tested over a sufficiently long period of 10,000-30,000 time steps. IPC 

was quantified using the method described in our previous work (26).In brief, we denoted the input at the nth time step as 
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un (1≤ n ≤N), and the input series was described as follows: 𝑢𝑛 = { 1    (𝐶𝑙𝑖𝑐𝑘)−1 (𝑁𝑜 𝐶𝑙𝑖𝑐𝑘) , 𝒖 = (𝑢1, … , 𝑢𝑁)𝑇 ∈ {−1, 1}𝑁.  

Let the internal state variable at the ith recording site at the nth time step be xn,i, the internal state vector xi and matrix X are 

described as 𝒙𝑖 = (𝑥1,𝑖 , … , 𝑥𝑁,𝑖)𝑇 ∈ 𝑅𝑁×1,  𝑋 = (𝒙1, … , 𝒙𝐿) ∈ 𝑅𝑁×𝐿,  

where L is the number of recording sites. For the target output 𝒛 = (𝑧1, … , 𝑧𝑁)𝑇 ∈ 𝑅𝑁×1, IPC(X, z) (0≤ IPC(X, z) ≤1) is 

defined below: 

𝐼𝑃𝐶(𝑋, 𝒛) =  1 − 𝑚𝑖𝑛𝑤 ∑ (𝑧𝑛 − �̂�𝑛)2𝑁1∑ 𝑧𝑛2𝑁1  = 𝒛𝑇𝑋𝑋+𝒛𝒛𝑇𝒛 ,  

where  �̂�𝑛 = ∑ 𝒘𝑁𝑛=1 𝑇 𝒙𝒏  and X+ ∈  𝑅𝐿×𝑁  represents the Moore-Penrose inverse of X. The target outputs were 

constructed using arbitrary polynomial chaos expansion, which constitutes a complete orthogonal system with input series 

of random variables with any probability distribution through the application of the Gram-Schmidt orthogonalization 

procedure. Specifically, in the case of an input series 𝒖 ∈ {−1,1}𝑁 following the Bernoulli distribution, the target outputs 

were defined as follows: 𝑧𝑠𝑑,𝑛 = ∏ 𝑢𝑛−𝑠𝑠∈𝑠𝑑  𝑓𝑜𝑟 𝑠𝑑 ∈ 𝑺𝑑,  

where d denotes the degree of the polynomial, s denotes the delay step of input, and Sd represents a set of entire 

combinations of s at degree d. In theory, the IPCs quantified comprehensively reveal both linear and non-linear mappings 

of past inputs in dynamical systems. However, due to the limitations of computation time, we were only able to quantify 

the 1st degree IPCs within 30 steps and the 2nd – 7th degree IPCs within 10 steps in the present study. 

 

To construct the internal state matrix X, we used a raster plot of click-evoked MUA in the auditory cortex during the 

presentation of input series of clicks (Fig. 1a). As the post-stimulus latency of MUA ranged from <10 ms to 300 ms, we 

defined a time window to select spikes included in the internal state variable xi (Fig. 1b). The optimal onset (ts) and length 

(d) of the time window were determined by maximizing the 1st degree IPC (Supplementary Fig. 1), with ts ranging from 0 

to 80 ms (at ts=0, 7, 10, 20, 40, and 80 ms) and d ranging from 7 to 320 ms (at d=7, 10, 20, 40, 80, 160, and 320 ms). The 

optimal ts was typically 0 ms, and d increased with the ISI, with a value of 40 ms at 7-, 10-, and 18-ms ISI. Using the 

number of spikes within the optimized window at each time step, we obtained the internal state variable xn,i at each 

recording site (Fig. 1c). 

 

Figure 2a depicts the decay of the 1st degree IPC from 1 to 30 time steps of each ISI, which indicates that the auditory 

cortex can be considered a reservoir with a fading memory typically of 10-15 time steps. Figure 2b shows the 2nd degree 

IPC for (s1, s2)∈ 𝑺2 of 1-10 steps for each ISI, indicating that the auditory cortex exhibits non-linear mapping of past inputs 
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in addition to the fading memory. Furthermore, Fig. 2c shows the breakdown of IPC at each degree, indicating that the 

auditory cortex exhibits non-linear mapping of past inputs up to the 6th degree. The total IPC, shown in Fig. 2d, was found 

to be dependent on the ISI of the input series (Kruskal-Wallis test, p = 0.0014), and was maximized around ISIs of 10 and 

18 ms, indicating that IPC is maximized when stimulus dynamics and intrinsic dynamics in the brain are matched. 

 

We then tested several benchmark tasks for reservoir computing by using half of X as training data and the remaining half 

as test data. In the shift register (SR) task, linear support vector classifiers with stochastic gradient descent learning and L2 

penalty were constructed for training data 𝒙𝒏 = (𝑥1,𝑛, … , 𝑥𝐿,𝑛) ∈ 𝑅𝐿 with class labels un-s. For the output of test data �̂�𝑛 

and the correct class label zn, the classification accuracy was defined as:  𝐴𝐶𝐶 =  1𝑁 ∑ (1 − |𝑧𝑛 − �̂�𝑛|)𝑁𝑛=1 ,  

was utilized to quantify the performance of the SR task. The results showed that the ACCs were higher than the chance 

level for time steps ranging from 5 to 15 (Fig. 3a), suggesting that the cortical activity retained linear memory of past inputs 

for a certain range of time steps. To perform logic operation tasks, we constructed linear regressors using 𝒙𝒏 =(𝑥1,𝑛, … , 𝑥𝐿,𝑛) ∈ 𝑅𝐿 as predictors and the logic operation (either AND, OR, or XOR) of 𝑢𝑛−𝑠1 and 𝑢𝑛−𝑠2 (i.e., 𝑧𝑛 =𝐹(𝑢𝑛−𝑠1 , 𝑢𝑛−𝑠2)) as responses. For the output of the test data �̂�𝑛 and the correct class label zn, we calculated the normalized 

root mean squared errors, which are defined as: 𝑁𝑅𝑀𝑆𝐸 =  1𝜎(𝒛) √1𝑁 ∑ (𝑧𝑛 − �̂�𝑛)2𝑁𝑛=1 , 

were derived for the original and surrogate data, and the difference 𝛥𝑁𝑅𝑀𝑆𝐸 = 𝑁𝑅𝑀𝑆𝐸𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 − 𝑁𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  

was used to quantify the task performance. NRMSEsurrogate was zn of randomized un. We found that, for some pairs of s1 and 

s2, ΔNRMSE was positive, indicating that the auditory cortex had IPC for these time-delay logical operations.  

 

Finally, we investigated the relationship between IPC and benchmark task performances (Table 1). To this end, we 

performed regression analyses using the 1st degree IPC as a predictor for each ISI, subject, and delay s, and the task 

performance (ACC or ΔNRMSE) as the response. For the SR task, which is nearly identical to the 1st degree IPC, the 

performance was highly explained by the IPC. For the logic operation tasks, we used multiple regression analyses with 

both the 1st and 2nd degree IPCs as predictors for each ISI, subject, and combination of (s1, s2). We found that the AND and 

OR task performances were significantly explained by the 1st degree IPC of s1 and s2, as well as the 2nd degree IPC of (s1, 

s2)∈ 𝑺2, whereas the XOR performance was significantly explained only by the 2nd degree IPC of (s1, s2)∈ 𝑺2. These results 

are consistent with the notion that the logic operation tasks can be broken down into polynomial representations, as 

described in Table 2, and suggest that both the 1st and 2nd degree IPCs are required for the AND and OR tasks, but only the 

2nd degree IPC is required for the XOR task. In summary, our results indicate that IPCs can predict benchmark task 

performance by decomposing the task into orthogonal polynomials, and thus are a valuable tool for quantifying the living 

neuronal system as a reservoir. 
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Our study demonstrated that IPC can be quantified in the living brain, and we observed that its magnitude depended on the 

inter-stimulus interval (ISI), peaking at around 10- and 18-ms ISI. This range of ISIs corresponds to the time window of 

gamma oscillations (30-90 Hz) in the cortex, which play a critical role in stimulus encoding (31, 32). Interestingly, we 

observed that IPC abruptly decreased at 7-ms ISI, possibly because the auditory cortex employs a rate coding strategy to 

encode rapid click sequences instead of click-synchronized coding at larger ISIs (33, 34). In this case, the state variables 

used in our study were not consistent with the encoding strategy in the auditory cortex, which could explain the drop in 

IPC. These findings suggest that IPC is closely linked to neural representation observed in physiological experiments, and 

that its measurement could be a useful tool for studying cortical dynamics. Future studies could investigate the relationship 

between IPC and other features of auditory processing, such as learning-induced plasticity or cognitive performance. 

 

Although we discovered a noteworthy amount of IPC in the auditory cortex, it was significantly smaller than those 

identified in previous theoretical studies (26-28). There are several possible factors that could explain this discrepancy. 

First, non-auditory neural activities could substantially decrease the IPC measured here. In a dynamic system with multiple 

input series, the IPC to each input is determined by the rank of the state variable matrix X (25, 26). For instance, 

spontaneous activities, which serve as non-auditory inputs (35-37) may have a significant impact on IPC quantification. 

Second, anesthetics can induce correlated neural activity and lead to the degeneracy of the rank of X (38). Third, anesthetics 

could also alter neural dynamics and impair our ability to derive IPC. For instance, the anesthetized state is typically 

characterized by burst activities (39, 40), which erase past memory in the neuronal network (9, 41). Although we used 

urethane as an anesthetic during neural measurements to avoid bursts, it still causes transitions between upstate and 

downstate (42-45), that are not accounted for in IPC estimation. Fourth, our recordings were made from a limited part of 

the auditory system, and thus may have overlooked a significant amount of IPC in the brain. Lastly, the state variables we 

selected may not be optimal for estimating IPC in response to random click sequences. We showed that IPC depends 

critically on the definition of state variables (Supplementary Fig. 1). Moreover, the click sequence may not be fully encoded 

in the state variables defined here; in addition to the number of spikes within a test time window, the brain could encode 

stimuli in other activity features such as post-stimulus latency, inter-spike intervals, and temporal changes in firing rates 

(within the time window we used in the present work), etc. (33, 34, 46, 47). Addressing these issues is critical for 

establishing a reliable IPC estimation in the living brain. 

 

In summary, our study demonstrated that the brain can be characterized as a physical reservoir with a measurable IPC. This 

finding provides future opportunities to bridge the gap between theoretical and experimental studies in neuroscience. 

Specifically, we are interested in investigating the relationship between learning-induced plasticity in the brain and changes 

in IPC, as well as exploring potential correlations between IPC and cognitive performance. These avenues of research 

could lead to a deeper understanding of the neural mechanisms underlying cognitive processes and potentially inform the 

development of future therapeutic interventions. 
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Figures 

Figure 1 Definition of of reservoir state variables. (a) Multi-unit activities (MUAs) in the auditory cortex in response to a 

click sequence with ISI of 100 ms. Clicks are delivered at red lines. (b) Time stamps of spikes (dots) at each time step in a 

representative recording site (#46). (c) State variables at each time step (n) in a representative recording site (#46), i.e., 

Xn,46. The number of spikes within a time window with length d were derived as a state variable.  

 

Figure 2 IPC estimates in the auditory cortex as a function of ISI. (a) The 1st degree IPC calculated for four different ISI of 

7, 18, 56, and 178 ms, presented with mean and s.d. and are given. (b) The 2nd degree IPC for ISI of 7, 18, 56, and 178 ms. 

(c) Breakdown of IPC. IPC at each degree was averaged and stacked in a bar. (d) Total IPC. Each dot indicates data from 

a different rat. On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles. The 

whiskers extend to the most extreme data points not considered outliers, which are larger than 75th percentiles or smaller 

than 25th percentiles by 1.5 times inter-quartile range from the box. 

 

Figure 3 Benchmark tasks. (a) Shift register task. The mean and s.d. of ACC for ut-s are given. Task performances for ISI 

of 7, 18, 56, and 178 ms are shown in each column. (b) Logic operation. ΔNRMSE of AND (upper), OR (middle) and XOR 

tasks (lower) with inputs 𝑢𝑡−𝑠1 and 𝑢𝑡−𝑠2 are shown in color.  

 

Tables 

Table 1 Regression analyses of benchmark tasks. 

Task IPC Coef p R𝑎𝑑𝑗2  

SR IPC(s) 0.944 p<10-40 0.890 

AND 

IPC(s1) 0.517 p <10-40 

0.847 IPC(s2) 0.390 p <10-40 

IPC(s1, s2) 0.201 p <10-40 

OR 

IPC(s1) 0.269 p <10-40 

0.788 IPC(s2) 0.338 p <10-40 

IPC(s1, s2) 0.435 p <10-40 

XOR 

IPC(s1) -0.0192 - 

0.930 IPC(s2) -0.0026 - 

IPC(s1, s2) 0.974 p <10-40 

Coef, regression coefficient; p, statistical significance of regression coefficient; R𝑎𝑑𝑗2 , adjusted 

coefficient of determination. 
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Table 2 Polynomial representation of logic operation tasks. 𝑥 𝑦 𝐴𝑁𝐷(𝑥, 𝑦) 𝑂𝑅(𝑥, 𝑦) 𝑋𝑂𝑅(𝑥, 𝑦) 

1 1 1 1 -1 

1 -1 -1 1 1 

-1 1 -1 1 1 

-1 -1 -1 -1 -1 

𝑢1 𝑢2 (𝑢1 + 𝑢2 + 𝑢1𝑢2 − 1) / 2 (𝑢1 + 𝑢2 − 𝑢1𝑢2 + 1) / 2 −𝑢1𝑢2 

 

Supplementary Material 

Supplementary Figure 1 The 1st degree IPC as a function of time window (ts, and d). Asterisks indicate the maximum for 

a given ISI. 
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